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ABSTRACT
Advanced wearable digital assistants can significantly enhance
task performance, reduce user burden, and provide personalized
guidance to improve users’ abilities. However, developing these
assistants presents several challenges. To address this, we introduce
TOM (The Other Me), a conceptual architecture and open-source
software platform (https://github.com/TOM-Platform) that sup-
ports the development of wearable intelligent assistants that are
contextually aware of both the user and the environment. Collabora-
tively developed with researchers and developers, TOM meets their
diverse requirements. TOM facilitates the creation of intelligent
assistive AR applications for daily activities, supports the record-
ing and analysis of user interactions, and provides assistance for
various activities, as demonstrated in our preliminary evaluations.
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•Human-centered computing→Ubiquitous andmobile com-
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1 INTRODUCTION
With recent advancements in Machine Learning (ML) and Artificial
Intelligence (AI) technologies, intelligent digital assistants are be-
coming an integral part of daily life. These include traditional voice
assistants like Siri or Google, and emerging wearable assistants
like Humane Ai Pin [1] and Rabbit R1 [24]. Intelligent digital assis-
tants can practically aid users in performing both familiar and new
tasks, reduce task load and errors, and enhance task performance
[11]. Moreover, these assistants can offer personalization, optimize
support for individual needs, and broaden accessibility.

User

Human
Interaction

Implicit

Domain Knowledge

Context Sensing

Context

Understanding
Context

(User Activity -
Oriented)
Service

Planning

Reasoning

Device
Communication

User
Sensing Understanding  User

User Profile

Understanding Device

Coordination

TOM

Explicit

Recording

(Task,
Environment,

Devices)

(Physical,
Cognitive,
Affective
states)

Figure 1: High-level conceptual architecture ofTOM. Arrows indicate
the communication channels, and arrow directions represent the
data/interaction flow.

However, developing wearable intelligent assistants presents
challenges for stakeholders such as users, developers, and researchers.
Despite existing interaction paradigms such as Heads-Up Comput-
ing [33] aiming to realize such assistance in daily activities with a
focus on users, there is a lack of understanding of the required sys-
tem capabilities and development guidance. While Augmented and
Mixed Reality (AR/MR) assistive systems that enhance user perfor-
mance have been developed [6, 7, 29], most are tailored to specific
tasks (e.g., ARGUS [11] for immersive analytics, Project Aria [15]
for data collection) and lack adaptability for various daily activities.
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Although the Platform for Situated Intelligence (\psi) [5, 8] enables
accelerated research and development in traditional interactive
systems, it lacks support for wearable, user-centered applications
[33] that facilitate task assistance while minimizing interference
by understanding user and context. While the recently introduced
SIGMA (Situated Interactive Guidance, Monitoring, and Assistance)
[9], which extends \psi, enables a mature system for (linear) proce-
dural task guidance using MR, it lacks user modeling, is catered to
specific smart glasses, and does not support general-purpose daily
tasks by default. Emerging wearable intelligent assistants such as
Rabbit R1 [24], which support specific activities (e.g., booking taxis,
querying objects), do not provide easy development or research
support (e.g., analyzing/visualizing data) and have limited user
interactions and understanding.

To tackle these challenges, we introduce TOM (The Other Me), a
software platform developed by identifying the needs of users, re-
searchers, and developers. TOM facilitates the creation and analysis
of wearable assistive applications, integrates new devices, enables
understanding of context and users, and supports multimodal in-
teractions with AR/MR devices and ML/AI technologies. Through
developing several proof-of-concept services (e.g., running coach
assistance, querying assistance, and memory assistance), we show-
case the utility of TOM in supporting different daily activities and
highlight the necessary future improvements.

The contributions of this paper are twofold: 1) Identifying es-
sential capabilities for a wearable intelligent assistive system and
proposing a conceptual architecture; 2) Creating the TOM system
platform to facilitate the development of assistive services for di-
verse activities and demonstrating its utility.

2 TOM: THE OTHER ME
2.1 System Capabilities
Wehave identified necessary system capabilities for users, researchers,
and developers based on literature reviews, interviewswithAR/MR/AI
researchers and developers, and tests of assistive Human-AI inter-
faces with users.

Just-in-time Assistance for Users. Users should be able to inter-
act (C1𝑎) with the system (i.e., provide input and receive feedback)
naturally and optimally to obtain the desired assistance [17, 33].
Such assistance should be delivered just in time to match the user’s
current needs or proactively when users have limited knowledge
of system capabilities [3, 25, 31], with minimal interference in the
user’s ongoing activities while accommodating the user’s cognitive
capabilities [4, 21]. To achieve this, the system should understand
the user (C1𝑏 ) and context (C1𝑐 ) to provide the most appropri-
ate feedback to support the user’s ongoing activities [13, 33]. This
understanding aids in modeling the human and the world to mini-
mize awareness mismatch between user expectations and system
feedback, and maintaining profiles [27].

Data Recording and Analysis for Researchers. To understand user
interactions with such a system and to design optimal interactions,
researchers need to record (C2𝑎), visualize (C2𝑏 ), and analyze
(C2𝑐 ) the data and develop models [11, 15, 22]. This involves col-
lecting data to support real-time and retrospective observations,
training models to predict optimal feedback, and analyzing their

performance, and understanding the underlying reasons for user
and system behaviors [11, 15, 23].

Ease of Development for Developers. Considering the variety of
activities users may engage in, the system should enable developers
to create different assistive features easily. This requires that de-
velopers can integrate new devices (C3𝑎) easily (e.g., sensors to
understand new contexts or actuators to provide optimal feedback),
deploy new assistance andmodels (C3𝑏 ) (e.g., to predict optimal
feedback), and access and control current data (C3𝑐 ) (e.g., from
existing devices or models).

2.2 Conceptual Architecture
To support the above requirements, we consider three main entities:
user (i.e., the individual receiving assistance), context (i.e., the user’s
perceptual space and associated tasks), and the system, TOM, as
illustrated in Figure 1, following the high-level context sources [16].

Separating the user from the context enables us to develop user
interaction models [33]. These models sense and understand the
user (C1𝑏 , e.g., cognitive states, affective states, physical states
[16]) to provide personalized feedback. Thus, TOM maintains user
profiles to cater to individual preferences and capabilities.

Given that daily activities, such as cooking, typically involve
both digital (e.g., viewing a recipe) and physical tasks (e.g., selecting
the proper portion), TOM offers system-level support to connect
the digital world with the physical world by understanding the
context (C1𝑐 , e.g., physical environment) and utilizing pervasive
augmented reality [16]. This involves a multi-modal and multifac-
eted understanding of the environment (e.g., understanding the
ongoing activities, associated objects, and relationships) as well as
understanding the devices that facilitate interactions (e.g., device
resource availability).

In terms of input, TOM supports the user’s explicit multi-modal
inputs (C1𝑎 , such as voice and gesture) as well as implicit inputs
(C1𝑎 , like gaze and physiological data), in addition to processing
multi-modal context information.

After understanding the context (e.g., ongoing activity) and user
(e.g., intention), TOM activates a context-aware service, employ-
ing domain knowledge to generate real-time proactive suggestions
through reasoning and planning. These suggestions are conveyed
to users as multi-sensory feedback (C1𝑎), tailored to their cogni-
tive capacity, including visual, auditory, and/or haptic modalities.
The feedback is dynamically updated based on the user’s actions;
for instance, if the user does not follow a given suggestion, TOM
formulates the next appropriate suggestion, considering the user’s
current status and context, facilitating a closed-loop control system.

Whenmultiple TOM users are involved in a collaborative activity
(e.g., group discussion on an artifact), each TOM system enables
multi-agent coordination to complete the collaborative activity
optimally.

3 SYSTEM ARCHITECTURE
We develop the following system/physical architecture based on
the requirements and envisioned use cases.



The Other Me UbiComp Companion ’24, October 5–9, 2024, Melbourne, VIC, Australia

Unity + MRTK

Client - SmartGlasses / Phone (X1)

WearOS

Client - Watch (X2)

HTML/JS

Client - Web (X3)

Python

Server (Y)

Communication (Z)
- WiFi (WebSocket), RTSP

(a) System (physical) architecture.

Widgets Processors (pre)

Services

Actuators / Outputs

Sensors /Inputs

Processors (post)

(b) Server architecture.

Widgets Processors (pre)

Server Inputs

ActuatorsSensors

Server Outputs
Communication

(c) Client architecture.

Figure 2: System architecture of TOM. Arrow directions represent the data flow. (a) Client-server architecture with multiple clients is used
considering the limited computational resources of wearable devices [11] (b) Server architecture with multiple layers to support the separation
of concerns, distributed communication, extendability, and resource discovery [13] (c) Client architecture with multiple layers.

3.1 Devices and Technologies
Following a user-centric approach [33], TOM uses wearable devices
that align with human input-output channels (e.g., eyes, hands),
such as Optical See-Through Head-Mounted Displays (OHMD, Aug-
mented Reality Smart Glasses, e.g., HoloLens2, Nreal Light) and
ring-mouses, to support multi-modal interactions (C1𝑎). It also
includes everyday wearable devices like smartwatches (e.g., Sam-
sung Galaxy/WearOS, Fitbit) to understand users, smartphones (e.g.,
Android) to provide familiar interactions, and web browsers for
visualizations.

To understand users, devices, and the environment, and to facili-
tate reasoning, planning, and coordination, TOM employs AI [26]
technologies. These include scene understanding, speech recog-
nition, object recognition/tracking, natural language processing,
and large language/multimodal models (LLM, LMM). For user feed-
back, TOM utilizes AR/MR technologies (e.g., OHMD). TOM uses
databases (e.g., PostgreSQL, Milvus) for data recording (C2𝑎), train-
ing (C3𝑏 ), and visualization (C2𝑏 ). Communication between de-
vices and with external APIs (e.g., ChatGPT) is handled using data
communication protocols (e.g., WebSocket, WebRTC, REST API)
and wireless mediums (e.g., WiFi, BLE).

3.2 Client-Server Architecture
Given the limited computational resources of wearable devices [11],
TOM is implemented as a client-server architecture, as illustrated in
Figure 2. The server hosts services for processing and orchestrating
data, supports ML/AI inferences, and provides real-time feedback
to clients. Clients, such as OHMDs and smartwatches, send sensor
data to the server and display feedback to the user. This separation
also allows TOM to be device-agnostic, supporting various OHMDs
through the same server (C3𝑎).

Server Architecture. Designed for flexibility and simplicity, the
server acts as a one-stop platform for deploying various services
optimized for different activities and switching between them as
needed. Adapting the architecture of the Context Toolkit [13], the
TOM server (Figure 2b) is implemented with independent compo-
nents under three distinct layers: Widgets (i.e., components that
listen for sensors and receive input data), Processors (i.e., state-
less components that process and transform input data from Wid-
gets or output data from Services), and Services (C3𝑏 , i.e., stateful
components that process data from Widgets and/or Processors

to produce desired outcomes)1. These layers are interconnected
with Sensors/Inputs and Actuators/Outputs linked to Clients. This
setup supports the separation of concerns, distributed communica-
tion, context storage, and resource discovery. A specialized service,
the Context Service, determines the most suitable Service based
on current input data (e.g., through explicit user interactions or
automatically determined by context data), switching services to
support ongoing user activities.

Client Architecture. As shown in Figure 2c, Clients mirror the
Server’s architecture. However, instead of Services, they interact
with the Server to stream sensor data and receive real-time feedback
for actuators. Time-critical processing can also be implemented in
clients (i.e., on-device) to overcome potential latency issues between
the client and server.

Data Flow and Communication. Data or messages, tagged with
source and time, are transferred between different layers (e.g., Input
-> Widget -> Processor -> Service -> Output, Figure 2b) via message
channels controlled by configuration files (C3𝑐 , e.g., Figure3b). This
arrangement allows for the reuse of various components across
multiple Services and supports distributed communication, thus
reducing development efforts. Moreover, each component can store
the data it handles in a local database for post-analysis (C2𝑐 , e.g.,
visualization, aggregation) or ML model training (C3𝑏 ). The Web-
Socket protocol is employed for real-time bidirectional commu-
nication between Clients and the Server. REST APIs are used for
communication with external APIs, while WebRTC and the Real-
Time Streaming Protocol (RTSP) facilitate the streaming of real-time
video data.

3.3 Implementation
The Server (Figure 2a-Y) is implemented in Python (3.11), chosen
for its extensive user base and support of numerous ML/AI libraries
with multiprocessing capabilities. The built-in library, SQLAlchemy,
also supports Data Storage.

The OHMD or mobile phone clients (Figure 2a-X1) are devel-
oped using Unity3D (2021.3) and MRTK2 (2.8) to provide AR/MR
content. This setup accommodates various devices (e.g., HoloLens2

1TOM does not incorporate Interpreters and Aggregators, unlike the Context Toolkit;
their functions are managed by either Processors or Services in TOM, minimizing
stateful components to enhance testability.
2Mixed Reality Toolkit: https://github.com/Microsoft/MixedRealityToolkit-Unity

https://github.com/Microsoft/MixedRealityToolkit-Unity
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(a)

input:
  - name: "camera"
    entrypoint: "camera_widget.CameraWidget.start"
    exitpoint: ""
    next:
      - "processing:yolov8"
  - name: "websocket"
    entrypoint: "websocket_widget.WebsocketWidget.start"
    exitpoint: ""
    next:
      - "service:running"
processing:
  - name: "yolov8"
    entrypoint: "Yolov8.detector.Yolov8Detector.run"
    exitpoint: ""
    next:
      - "service:running"
service:
  - name: "running"
    entrypoint: "running_service.running_service.RunningService.run"
    exitpoint: ""
    next:
      - "output:websocket"
output:
  - name: "websocket"
    entrypoint: "websocket_output.WebsocketOutput.send"
    exitpoint: ""

(b)

Figure 3: Running assistance implemented in TOM. (a) System components that enable the running assistance, C3𝑏 . Dashed-line boxes indicate
implemented Client components, solid lines represent implemented Server components, and dotted lines denote Server components under
development. (b) The configuration file that controls the data flow, C3𝑐 . Data is received in one or more components in the Input Layer (e.g.,
‘camera’ component) and is sent to the next component as specified in the next key (e.g., ‘yolov8’ component in the Processing Layer). This
process occurs similarly for all components regardless of the layer, with the entry point dictating the method in each component that receives
the data from the previous component. The exit point then dictates the method for each component, which is called when they should be
stopped (e.g., when the context switch indicates the component is no longer required).

Table 1: Technologies used within the current TOM. For the latest supported technologies, refer to the TOM-Platform

Capability Type Server Client

Python Server (Laptop) HoloLens 2 XReal Light Web Client Android Phone

Context Understanding
Visual GoogleCloudVision, Yolov8 - - - MLKit
Audio MediaPipe - - - -
Spatial GoogleCloudVision SLAM (inbuilt) SLAM (inbuilt) - -

User Understanding Physiological Fitbit API - - - WearOS Watch

Interactions
Visual Bing Image Search API - - Graphs, Charts -

Audio Speech-to-Text (Whisper),
Text-to-Speech

Speech-to-Text (Azura),
Text-to-Speech Text-to-Speech - Speech-to-Text (Android),

Text-to-Speech

Other - Hand Tracking (inbuilt),
Gaze Tracking (inbuilt) Hand Tracking (inbuilt) Visualizations Touch

Communication
APIs REST - - - -
Data Stream Websocket Websocket Websocket, TCPSocket Websocket, TCPSocket TCPSocket
Video Stream WebRTC, RTSP - WebRTC WebRTC WebRTC

Assistance Queries,
Memory

ChatGPT, Claude,
Local LLM (TinyLlama)
Encoding (Clip, ImageBind)
Vector Database (Milvus)

- - - -

with UWP, Nreal with Android) and enables mixed reality capabili-
ties with OpenXR support. Other clients, such as the Smartwatch
(Figure 2a-X2), designed to sense the user, are implemented us-
ing WearOS due to its widespread use. Additionally, a web client
(Figure 2a-X3) is used for visualization, utilizing HTML/VueJS and
NodeJS.

Table 1 provides an overview of the technologies that support
the TOM’s current capabilities, and Table 2 illustrates the various
client data supporting the system’s capabilities. These data sources
include Ring Mouse Controllers connected to OHMDs, Gesture and

Gaze Detection through OHMDs, and User Input via the Touch
Screen on Android Phones.

For additional details, please refer to https://github.com/TOM-
Platform.

3.4 Preliminary Use Cases
We invited three teams to implement proof-of-concept services
of their choice to support daily activities as case studies [20] to
understand how developers, users, and researchers benefit from
the TOM. The details and feedback are shown in Figure 4, which

https://github.com/TOM-Platform
https://github.com/TOM-Platform
https://github.com/TOM-Platform
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Figure 4: Details of the three preliminary case studies, including team, system, task, and feedback from users and team.
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Table 2: Data from currently supported Clients. For the latest supported devices/capabilities, refer to the TOM-Platform.

Data Type Client

HoloLens2 XReal Light WearOS Watch Web Client Android Phone

Context Understanding
Visual Video Video - - Video
Auditory Audio Audio - - Audio
Spatial WorldMesh WorldMesh Location (GPS) - Location (GPS)

User Understanding Physiological - - Heart Rate - -
Physical - - Speed, Calories - -

Interactions (Output) Visual Text, Image,
Video, 3D Object

Text, Image,
Video, 3D Object

Text, Image,
2D Object

Text, Images,
Video

Text, Image,
Video, 3D Object

Auditory Audio, Text Audio, Text Audio Audio Audio, Text

Interactions (Input)

Voice Audio (Speech) Audio (Speech) - - Audio (Speech)
Gesture Hand, Finger Hand, Finger - - -
Gaze 3D Gaze, Gaze Collision - - - -
Controller 2D Press 3D Press - - 2D Touch

indicates that TOM is able to meet their needs (Sec 2.1) and highlight
areas for improvement.

Additionally, we conducted a preliminary technical evaluation
(N=50 requests/calls) of major system components/APIs: commu-
nication (websocket) latency between client and server: 0.091 ±
0.012s, video streaming (HoloLens2): 0.90 ± 0.15s, voice interac-
tion (HoloLens2): 2.45 ± 0.16s (average gaze and gesture points
are sent every 1s), YoloV8 object detection: 0.023 ± 0.005s, Google
Text/Object Detection: 1.04±0.15s, GPT-3.5: 0.67±0.24s, TinyLlama
(local LLM): 1.30±0.07s, CLIP embedding: 0.69±0.24s. Additionally,
WearOS sends the average data every 3s.

4 LIMITATIONS AND FUTUREWORK
In addition to technical and interaction challenges (Figure 4), sit-
uational impairments, such as decreased feedback accuracy (e.g.,
hallucinations) in dynamic environments, highlight the need for
seamless input modality transitions [19] and more transparent AI
explanations [10, 14, 30] to mitigate user mistrust. TOM also faces
limitations in automatic service switching to optimize suitable as-
sistance and could benefit from integrating Large Action Models
(LAM) [24] to enhance interaction efficiency and understanding
of user actions. Additionally, TOM requires improved visualization
techniques for better long-term behavior analysis [11, 18] and ad-
vanced modeling [22, 23] to comprehend users’ cognitive states and
activity correlations. Moreover, developing such systems introduces
significant privacy, security, and ethical concerns [2, 12, 28], par-
ticularly in real-world deployment affecting users and bystanders.
These issues necessitate further advancements in on-device com-
puting [32] and robust handling of sensitive data.

5 CONCLUSION
We have presented the anticipated capabilities of developing a
wearable intelligent assistive system and introduced TOM, an archi-
tecture and open-source implementation (https://github.com/TOM-
Platform) that enables researchers and developers to create and
analyze assistive applications for supporting daily activities. We
welcome contributions from the community to expand its supported
devices and usage scenarios. We envision that TOM will serve as a

software platform for researchers and developers to develop inno-
vative, intelligent assistance in various tasks, facilitating human-
computer, human-AI, and human-robot interactions. Our future
plans include extending TOM’s capabilities to enable remote robot
interactions, where humans can share information (e.g., intentions)
with a remote robot to execute tasks.
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