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ABSTRACT
Advanced wearable digital assistants can significantly enhance
task performance, reduce user burden, and provide personalized
guidance to improve users’ abilities. However, developing these
assistants presents several challenges. To address this, we introduce
TOM (The Other Me), a conceptual architecture and open-source
software platform (https://github.com/TOM-Platform) that sup-
ports the development of wearable intelligent assistants that are
contextually aware of both the user and the environment. Collab-
oratively developed with researchers and developers, TOM meets
their diverse requirements. TOM facilitates the creation of intel-
ligent assistive AR applications for daily activities and supports
the recording and analysis of user interactions, integration of new
devices, and the provision of assistance for various activities.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;Mobile devices;Mixed / augmented
reality; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION AND RELATEDWORK
With recent advancements in Machine Learning (ML) and Artificial
Intelligence (AI) technologies, intelligent digital assistants are be-
coming an integral part of daily life. These include traditional voice
assistants like Siri or Google, and emerging wearable assistants
like Humane Ai Pin [1] and Rabbit R1 [27]. Intelligent digital assis-
tants can practically aid users in performing both familiar and new
tasks, reduce task load and errors, and enhance task performance
[12]. Moreover, these assistants can offer personalization, optimize
support for individual needs, and broaden accessibility.

However, developing wearable intelligent assistants presents
challenges for stakeholders such as users, developers, and researchers.
Despite existing interaction paradigms such as Heads-Up Comput-
ing [37] aiming to realize such assistance in daily activities with
a focus on users, there is a lack of understanding of the required
system capabilities and development guidance. While Augmented
and Mixed Reality (AR/MR) assistive systems that enhance user
performance have been developed [6, 7, 32], most are tailored to
specific tasks (e.g., ARGUS [12] for immersive analytics, Project
Aria [16] for data collection) and lack adaptability for various daily
activities. Although the Platform for Situated Intelligence (\psi)
[5, 8] enables accelerated research and development in traditional
interactive systems, it lacks support for wearable, user-centered
applications [37] that facilitate task assistance while minimizing in-
terference by understanding user and context. Emerging wearable
intelligent assistants such as Rabbit R1 [27], which support specific
activities (e.g., booking taxis, querying objects), do not provide easy
development or research support (e.g., analyzing/visualizing data)
and have limited user interactions and understanding.

To tackle these challenges, we introduce TOM (The Other Me), a
software platform developed by identifying the needs of users, re-
searchers, and developers. TOM facilitates the creation and analysis
of wearable assistive applications, integrates new devices, enables
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understanding of context and users, and supports multimodal in-
teractions with AR/MR devices and ML/AI technologies. Through
developing several proof-of-concept services (e.g., running coach
assistance, translation, and querying assistance), we showcase the
utility of TOM in supporting different daily activities and high-
light the necessary future improvements. For additional evaluation,
please refer to our original paper, TOM [22].

2 TOM: THE OTHER ME
2.1 Envisioned Usage Scenarios
Consider Jane, who regularly uses Jerry, a digital assistant de-
veloped using TOM, in her daily life. Jerry sees what Jane sees,
hears what Jane hears, knows her preferences, and understands her
emotional and physical conditions.

Scenario. Unable to decide on a dish to prepare for herself and
her toddler and wishing to try something new, she opens the re-
frigerator and asks, “Hey, Jerry. Can you suggest a new dish for
us?” Jerry scans and identifies the ingredients in the refrigerator,
finds possible dishes, and renders three new dish suggestions with
their images. Jane finds the second suggestion appealing and in-
quires about the preparation process. Jerry then guides her through
preparing the new dish, providing real-time, step-by-step feedback
superimposed in real-world objects.

Later, Jane receives a delivery of a play table set for her tod-
dler, ordered through Jerry during an online browsing session. She
notices her toddler’s eagerness to assist in assembling the set. Ex-
amining the package, she asks, “Hey Jerry, can you help me build
this?” By identifying the play table set and retrieving instructions,
Jerry displays step-by-step virtual instructions superimposed on
the physical parts, which Jane follows while involving her toddler.
Suddenly, her toddler accidentally drops a piece of the set, striking
his leg and causing him to cry. Jane becomes panicked. Sensing
the situation, Jerry instructs her to remain calm and inspect her
toddler’s leg. As Jane consoles her child, Jerry assesses the situa-
tion and provides first-aid instructions. During the first aid, Jerry
asks whether to contact her husband, family doctor, or hospital for
further treatment. Upon request, Jerry connects with the family
doctor via video call to further observe the toddler’s leg.

2.2 System Capabilities
In our quest for an envisioned intelligent wearable assistant, Jerry,
we observed that while certain capabilities are supported by existing
context-aware and assistive AR/MR systems, a complete integration
of these capabilities into a single system is lacking. The Heads-Up
Computing Paradigm [37], while theoretically supporting our envi-
sioned use cases, does not provide guidance on implementing such
a system or the capabilities required to further research optimal
Human-AI interactions during daily activities. Drawing from litera-
ture, our experience working with AR/MR and AI researchers, and
testing assistive Human-AI interfaces (including early prototypes
of TOM) with participants and their feedback, we have formulated
the following system capabilities. These are categorized based on
three major stakeholders’ requirements, which, though distinct,
have overlapping capabilities.

Just-in-time Assistance for Users. Users should be able to interact
with the system (i.e., provide input and receive feedback) naturally
and optimally to obtain the desired assistance [18, 37]. Such assis-
tance should be delivered just in time to match the user’s current
needs or proactively when users have limited knowledge of sys-
tem capabilities [3, 29, 34], with minimal interference in the user’s
ongoing activities while accommodating the user’s cognitive ca-
pabilities [4, 23]. To achieve this, the system should understand
the user and context to provide the most appropriate feedback to
support the user’s ongoing activities [14, 37]. Such understanding
aids in modeling the human and the world to minimize aware-
ness mismatch between user expectations and system feedback and
maintaining profiles [30].

Data Recording and Analysis for Researchers. To understand user
interactions with such a system and to design optimal interactions,
researchers need to record, visualize, and analyze the data and
develop models [12, 16, 24]. This involves collecting data to sup-
port real-time and retrospective observations, training models to
predict optimal feedback and analyzing their performance, and un-
derstanding the underlying reasons for user and system behaviors
[12, 16, 26].

Ease of Development for Developers. Considering the variety of
activities users may engage in and their unique assistance require-
ments, the system should enable developers to create different as-
sistive features easily. This requires that developers can integrate
new devices easily (e.g., sensors to understand new contexts or
actuators to provide optimal feedback), deploy new assistance
and models (e.g., to predict optimal feedback), and access and
control current data (e.g., from existing devices or models).

2.3 Conceptual Architecture
To support the above requirements, we consider three main entities:
user (i.e., the individual receiving assistance), context (i.e., the user’s
perceptual space and associated tasks), and the system, TOM, as
illustrated in Figure 1, following the high-level context sources [17].

Separating the user from the context enables us to develop user
interaction models [37]. These models sense and understand the
user (e.g., cognitive states, affective states, physical states [17]) to
provide personalized feedback. Thus, TOM maintains user profiles
to cater to individual preferences and capabilities.

Given that daily activities, such as cooking, typically involve
both digital (e.g., viewing a recipe) and physical tasks (e.g., selecting
the proper portion), TOM offers system-level support to connect
the digital world with the physical world by understanding the
context (e.g., physical environment) and utilizing pervasive aug-
mented reality [17]. This involves a multi-modal and multifaceted
understanding of the environment (e.g., understanding the ongoing
activities, associated objects, and relationships) as well as under-
standing the devices that facilitate interactions (e.g., device resource
availability).

In terms of input, TOM supports the user’s explicit multi-modal
inputs (such as voice and gesture) as well as implicit inputs (like
gaze and physiological data), in addition to processing multi-modal
context information.
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(b) High-level conceptual architecture of TOM.

Figure 1: Conceptual entities and high-level modules associated with TOM. Arrow directions represent the communication (e.g.,
data/interaction) flow.

After understanding the context (e.g., ongoing activity) and user
(e.g., intention), TOM activates a context-aware service, employing
domain knowledge to generate real-time proactive suggestions
through reasoning and planning. These suggestions are conveyed to
users as multi-sensory feedback, tailored to their cognitive capacity,
including visual, auditory, and/or haptic modalities. The feedback
is dynamically updated based on the user’s actions; for instance, if
the user does not follow a given suggestion, TOM formulates the
next appropriate suggestion, considering the user’s current status
and context, facilitating a closed-loop control system.

System Architecture: Implementation. Refer to TOM [22] and
https://github.com/TOM-Platform for client-server implementation
of the system architecture, which satisfies the above requirements
and (partial) envisioned use cases. To overcome potential latency
issues between the client and server, time-critical processing can
also be implemented on-device.

3 DEMONSTRATION DURING EXERCISES
We have implemented several proof-of-concept services to support
daily activities, such as exercising in mobile and stationary set-
tings, and realizing our vision of an intelligent, wearable, proactive
assistant.

3.1 Running Assistance
Scenario. Jack uses Jerry (implemented using TOM) to assist with

his running exercises (Figure 3). He wears an OHMD and a smart-
watch (connected to a Server operating on a laptop1). He initiates
his running (speed or distance) training using voice interactions.
Jerry provides route options, and he selects one using either voice
commands or mid-air gestures. During his run, Jerry provides per-
sonalized running coach instructions (e.g., speeding up or slowing

1In the future, we plan to run the Server in the cloud

down based on his current speed, training plan, and user profile)
and proactive suggestions (e.g., encouraging feedback based on
duration, alerting about potential dangers like traffic lights based
on environment sensing, giving direction cues based on location,
indicating waterpoints based on location) using either visual or
auditory modality when required (i.e., by default, Jerry will provide
only essential details, such as the time, to reduce the display clutter
and information overload). At the end of his run, he receives a
summary of the exercise.

System. As shown in Figure 2, the current running assistance is
implemented as a Running Service. This service processes sensor
data from the smartwatch, user interactions, and the egocentric
camera view from the OHMD, and route information from external
API to determine the next running coach instruction and provide
feedback. Then, the service sends the feedback to the OHMD using
a pre-configured display layout (Figure 3) designed based on user
testing. If the user does not specify certain details required for
running (e.g., expected speed), the system uses the user’s profile to
determine them.

Limitations. During preliminary user testing, we identified sev-
eral device and technical limitations. These include impaired vis-
ibility of the OHMD’s visual feedback in outdoor environments,
misrecognition of voice commands due to background noise and
user fatigue during running, the OHMD’s weight affecting the ex-
ercise experience, and instability of visual feedback from frequent
head movements (content jumps) [19, 21]. Additionally, participants
requested adaptive user interfaces tailored to their preferences and
environment [25] for enhanced visibility.

3.2 Martial Arts Assistance
Scenario. Emma, a beginner with limited access to her coach,

requests Jerry’s assistance in training in martial arts (Figure 4). She

https://github.com/TOM-Platform
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(a) The high-level components of the running assistance.

input:
  - name: "camera"
    entrypoint: "camera_widget.CameraWidget.start"
    exitpoint: ""
    next:
      - "processing:yolov8"
  - name: "websocket"
    entrypoint: "websocket_widget.WebsocketWidget.start"
    exitpoint: ""
    next:
      - "service:running"
processing:
  - name: "yolov8"
    entrypoint: "Yolov8.detector.Yolov8Detector.run"
    exitpoint: ""
    next:
      - "service:running"
service:
  - name: "running"
    entrypoint: "running_service.running_service.RunningService.run"
    exitpoint: ""
    next:
      - "output:websocket"
output:
  - name: "websocket"
    entrypoint: "websocket_output.WebsocketOutput.send"
    exitpoint: ""

(b) The configuration file for the Running (Assistance) Service

Figure 2: Running assistance implemented in TOM. (a) System components that enable the running assistance. Dashed-line
boxes indicate implemented Client components, solid lines represent implemented Server components, and dotted lines denote
Server components under development. (b) The configuration file that controls the data flow. Data is received in one or more
components in the Input Layer (e.g., ‘camera’ component) and is sent to the next component as specified in the next key (e.g.,
‘yolov8’ component in the Processing Layer). This process occurs similarly for all components regardless of the layer, with the
entry point dictating the method in each component that receives the data from the previous component. The exit point then
dictates the method for each component, which is called when they should be stopped (e.g., when the context switch indicates
the component is no longer required).

Figure 3: The running assistance UI supports voice and mid-air gesture input interactions. (a) The user starts the running
assistance and is prompted to select a route. (b) Jerry provides personalized training guidance, proactive feedback on potential
dangers or encouragement, and details about water points while running. (c) In the end, Jerry presents the user with a run
summary.

starts punch training after configuring the training exercises (e.g.,
location, duration, count) using voice or gesture interactions. If
there are any inaccuracies in how Emma punches, Jerry provides
real-time visual or auditory feedback on the needed adjustments.
After the session, a summary of the session’s performance and
required improvements is provided.

After several days, Emma checks the web dashboard (Figure 4(c))
to review her performance over time and notices inaccuracies in a

particular punch. In her next physical session, she plans to consult
her coach to address this shortcoming and ask Jerry to configure
the suggested changes to improve her training program.

System. The current martial arts assistance system uses hand-
tracking capabilities to detect the user’s punches and predefined
rules to identify their accuracy, which TOM uses to provide feed-
back.
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Figure 4: The martial arts assistance UI supports voice and mid-air gesture interactions. (a) The user can configure the punching
pads. (b) Jerry instructs whether punches are correct and necessary adjustments in real-time. (c) The user sees the post-summary
of their punching exercises on the web dashboard.

Limitations. Development limitations were noted in the martial
arts assistance, such as a lack of automatic inference from past data
to customize the training exercises automatically.

4 LIMITATIONS AND FUTURE
IMPROVEMENTS

In addition to the identified technical limitations from specific
demonstrations, interaction design challenges surfaced in daily
activities. Situational impairments, especially in dynamic environ-
ments, restrict certain user interactions (e.g., diminished voice com-
mand accuracy in outdoor wind), underscoring the need for meth-
ods to support seamless input modality transitions [21]. Inaccura-
cies in AI-generated suggestions also contribute to user mistrust,
necessitating more transparent AI explanations [11, 15, 33].

Moreover, TOM’s current implementation exhibits limitations.
A notable area is the automatic switching of services based on user
inputs to optimize service execution for ongoing activities, when
multiple services match expected assistance, requiring further re-
search in this area. Despite TOM’s support for the Large Language
Model (LLM) in facilitating human-like conversations and tasks
[9, 10, 28, 35], integrating Large ActionModels (LAM) [27] could en-
hance interaction efficiency with external applications and improve
user action understanding. Effective live monitoring is available,
but TOM needs better visualizations for comprehensive retrospec-
tive analysis of long-term user behaviors. Aggregated visualization
techniques, similar to ARGUS [12], and retrospective analysis such
as PilotAR [20] could aid in this. Additionally, advancing the sys-
tem’s grasp of users’ cognitive states and their activity correlations
requires sophisticated modeling and simulation [24, 26]. Similarly,
facilitating effective multi-agent collaboration while preserving
user autonomy in multi-user TOM scenarios remains a significant
research challenge.

Finally, developing such systems implicates privacy, security,
safety, and ethical challenges. Despite Institutional Review Board
(IRB) approval for user studies, real-world deployment raises critical
privacy, safety, and social acceptability concerns, considering both
users and bystanders [2, 13, 31]. Issues include monitoring and
recording users’ physical and cognitive states, capturing bystanders’
behaviors without consent, securely handling sensitive data, and

anonymizing data for aggregate analysis. Although on-device/edge
computing provides partial solutions [36], the limitations of current
devices necessitate further advancements.

5 CONCLUSION
We have presented the anticipated capabilities of developing an
intelligent wearable assistive system and introduced TOM, an archi-
tecture and open-source implementation (https://github.com/TOM-
Platform) that enables researchers and developers to create and
analyze assistive applications for supporting daily activities. We
welcome contributions from the community to expand its supported
devices and usage scenarios. We envision that TOM will serve as a
software platform for researchers and developers to develop inno-
vative, intelligent assistance in various tasks, facilitating human-
computer, human-AI, and human-robot interactions. Our future
plans include extending TOM’s capabilities to enable remote robot
interactions, where humans can share information (e.g., intentions)
with a remote robot to execute tasks.
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