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Abstract
The rapid evolution of lightweight consumer augmented reality
(AR) smart glasses (a.k.a. optical see-through head-mounted dis-
plays) offers novel opportunities for learning, particularly through
their unique capability to deliver multimodal information in just-
in-time, micro-learning scenarios. This research investigates how
such devices can support mobile second-language acquisition by
presenting progressive sentence structures in multimodal formats.
In contrast to the commonly used vocabulary (i.e., word) learning
approach for novice learners, we present a “progressive presenta-
tion” method that combines both word and sentence learning by
sequentially displaying sentence components (subject, verb, object)
while retaining prior context. Pilot and formal studies revealed that
progressive presentation enhances recall, particularly in mobile
scenarios such as walking. Additionally, incorporating timed gaps
between word presentations further improved learning effective-
ness under multitasking conditions. Our findings demonstrate the
utility of progressive presentation and provide usage guidelines
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for educational applications—even during brief, on-the-go learning
moments.

CCS Concepts
• Human-centered computing → Empirical studies in HCI; •
Applied computing→ Education.
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1 Introduction
The rise of mobile learning reflects growing demand for educa-
tional tools that accommodate fast-paced, multitasking lifestyles—
particularly in language learning, where consistent practice is es-
sential [7, 36]. However, many learners struggle to maintain regular
study due to frequent interruptions, cognitive load fluctuations, and
physical limitations such as small mobile screens [12, 32, 43]. These
challenges call for lightweight, cognitively efficient solutions that
integrate seamlessly into daily routines.

Advances in digital technology offer promising avenues to meet
these needs. In particular, consumer-grade augmented reality (AR)
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Figure 1: Apparatus and presentation formats used in the study. (a) A participant wearing AR smart glasses and headphones
while walking. (b) The participant views learning content through the smart glasses, illustrating the Full (b1) and Progressive
presentation formats, including the NoGap (b2) and Gap (b3) conditions. The durations for each modality (L1/L2 text, L1/L2
audio, images) and no-content gaps were kept consistent. An extra 8 seconds was added between sentences, and an additional
𝑑 = 3 seconds was included for the final full sentence to ensure adequate viewing time. Black regions in the smart glasses
display represent transparent areas. (c) Simulated user’s view showing how digital content is superimposed on the physical
environment. Due to the tinting of smart glasses, the content appears darker than normal. In reality, users do not notice this
effect as the frame of the smart glasses blocks peripheral vision.

devices—lightweight Optical See-Through Head-Mounted Displays
(OST-HMDs or AR smart glasses)—are emerging as viable tools
for everyday use [5, 20]. These assisted reality devices, such as the
XReal Air, Rokid, and TCL RayNeo 2, overlay digital content in the
user’s field of view, enabling quick-glance, context-independent
interactions [35]. Unlike immersive AR systems that spatially an-
chor content, these streamlined devices support subtle, ambient
engagement, making them well-suited for opportunistic mobile
learning [21].

Building on this potential, we investigate how lightweight AR
glasses can support mobile language learning. A key question arises:
how can multimodal information be composed and presented effec-
tively within the constraints of these devices? Rather than develop-
ing complex, context-aware applications, we focus on optimizing
content presentation to suit device limitations. This approach ad-
dresses both technical constraints of OST-HMDs and real-world
usage—typically brief, multitasked interactions.

Grounded in Cognitive Theory of Multimedia Learning [30, 31],
our study examines how combinations of visual (e.g., text, images)
and auditory (e.g., pronunciation) elements enhance language learn-
ing while managing cognitive load. We aim to develop presentation
methods that are lightweight yet effective, improving outcomes
within the limits of current OST-HMDs.

To this end, we conducted pilot and formal experiments eval-
uating sentence presentation techniques using lightweight OST-
HMDs. We tested different multimodal combinations—text, audio,
images—to assess their effect on learning. We also examined how

multitasking influences learning, acknowledging varied usage con-
texts from stationary to mobile settings.

Our findings show that a progressive sentence presentation strat-
egy supports language learning during mobile multitasking. This
method incrementally introduces sentence components before pre-
senting the full sentence, helping learners grasp both individual
elements and overall structure. Additionally, inserting strategic
word gaps enhances recall in mobile contexts.

Thiswork provides preliminary empirical evidence onAR-assisted
language learning and offers design insights for educational appli-
cations. Our findings highlight the potential of lightweight OST-
HMDs to support natural, engaging information acquisition.

2 Related Work
2.1 Mobile Language Learning and Augmented

Reality
Mobile microlearning leverages short, intermittent periods to de-
liver bite-sized language content (e.g., vocabulary), supporting ac-
quisition during everyday tasks [7, 36]. It has gained traction due
to its accessibility and convenience [13–15]. To enhance retention,
prior work has explored situated contexts, such as location-based
microlearning [15]. Recently, OST-HMDs or AR smart glasses have
emerged as promising platforms for context-aware learning, offer-
ing hands-free, heads-up access to digital content superimposed in
the user’s view (i.e., physical world) [20]. Systems like ARbis Pictus
[19] and VocabulARy [41] improve recall over non-AR approaches
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(e.g., desktop flashcards or tablet annotations) by embedding vi-
sual annotations in situated physical contexts. While most prior
work has focused on vocabulary learning in both AR and non-AR
settings, emerging evidence suggests that embedding vocabulary
within broader semantic structures—such as sentence-level presen-
tations or narratives—enhances comprehension and retention in
stationary, non-AR environments [9, 27, 39]. Our work extends
this by introducing a progressive sentence disclosure method on
AR smart glasses, integrating isolated vocabulary with contextual
sentence presentation under mobile multitasking conditions.

2.2 Multimodal Presentation and Cognitive
Load

Mayer’s Cognitive Theory of Multimedia Learning (CTML), along
with the Multimedia Principle, posits that effective learning com-
bines visual, auditory, and textual modalities to support richer en-
coding and improved retention [30, 31]. However, poorly designed
multimodal presentations can increase cognitive load, especially
for novice learners [16, 40]. This aligns with Sweller’s Cognitive
Load Theory, which distinguishes between intrinsic load (material
complexity), extraneous load (load from poor design), and germane
load (resources allocated to schema construction) [31, 40]. These
loads interact dynamically: reducing extraneous load frees cogni-
tive capacity for germane processing. In language learning, intrinsic
load is high due to unfamiliar vocabulary and grammar, making it
essential to minimize extraneous load through effective presenta-
tions/interfaces while promoting germane load. Strategies such as
the segmenting principle—breaking content into smaller, progres-
sive units—help manage extraneous load by enabling incremental
processing [26, 31]. Our approach builds on these principles by
employing progressive disclosure: sequentially revealing sentence
components with synchronized multimodal cues (text, images, au-
dio). This design reduces extraneous load and supports multitasked
learning [21, 34], while potentially enhancing germane load by
reinforcing semantic links between words in context.

3 Study Overview
This research investigates effective sentence presentation styles
for language learning in mobile contexts using assisted reality [35].
While word-level learning supports beginners [18], sentence-based
approaches provide richer context for deeper learning [2, 9, 27].
To explore this, we conducted informal pilot studies to refine 1)
modalities for sentence presentation (Pilot 1, N=5), and 2) chunking
styles that support mobile learning (Pilot 2, N=6). These led to a
progressive sentence disclosure method that decomposes sentences
into subject-verb-object structures. While promising, the pilots
also revealed the potential influence of timing gaps between word
displays (Pilot 3, N=2), prompting a formal investigation (Study
1, N=12). A follow-up pilot (Pilot 4, N=4) evaluated the method’s
ecological validity.

4 Common Setting
All pilot (Pilot 1-4) and formal (Study 1) studies were conducted in
a controlled lab environment to minimize confounding factors (e.g.,
noise, lighting) and shared the following common elements.

4.1 Participants
Participants (total of 27) were adult learners (age 19–26) from the
university community, self-reporting full professional fluency in
English as their first language (L1) and willingness to learn a second
language (L2). Demographics, language background, and fluency
are detailed in each study section. All had normal or corrected-to-
normal vision and hearing, with no reported impairments.

All procedures were IRB-approved. Participants gave informed
consent and were compensated at $7.25/hour. No participant took
part in more than one study.

4.2 Apparatus
As shown in Figure 1(a), participants wore XREAL Air glasses
(1920×1080 px, 46° FoV, 60Hz) and Bose QuietComfort Bluetooth
noise-canceling headphones for audio and to secure the glasses.
The AR glasses mirrored a laptop’s display via USB1. The learn-
ing content presentations were controlled using a Python backend
and VueJS frontend on a MacBook Pro (14-inch, M3 Pro). Dur-
ing walking conditions, the laptop was carried in a light back-
pack. The laptop also shared its screen via Zoom with the ex-
perimenter for monitoring. See https://github.com/Synteraction-
Lab/ProgressiveSentences for implementation details.

4.3 Task
We simulated two everyday AR usage scenarios:

Walking [Multitasked Learning]: Mobile multitasking sce-
nario simulating real-world contexts like commuting, where users’
attention is divided between non-learning (e.g., walking, check-
ing the surroundings) and learning tasks [43]. Participants assem-
bled a 6-piece Duplo Lego block to match a color/shape sample,
transporting pieces along a 5-meter path, simulating hands-busy
multitasking. Block colors varied to ensure consistent difficulty.

Sitting [Focused Learning]: Seated language learning to simu-
late stationary usage (e.g., focused learning while sitting).

4.4 Materials
Participants studied L2 words or sentences with L1 meanings, de-
pending on the condition.

4.4.1 L2 Language. We used Wuggy pseudowords [24] as L2, com-
monly applied in HCI and linguistics (e.g., [29, 37]). This controlled
for prior knowledge, avoided cognates, and ensured consistent
complexity [8].

4.4.2 L1 Sentences. Focusing on A1 fluency (beginner level) [3], we
created 40 English (L1) statements using basic Subject-Verb-Object
grammar. Nouns were drawn from Ogden’s Basic English [33], with
common pronouns and function words (articles/prepositions). Each
sentence had 2–3 unique L1 words (with 4-5 total words).

4.4.3 Sentence List. Each L1 word was mapped to a Wuggy L2
pseudoword. Three co-authors reviewed all pairs to ensure no cog-
nates. L2 sentences were created via word-to-word mappings (see
Table 1).

1XREAL Air projects a 130-inch equivalent screen at 4 meters
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https://github.com/Synteraction-Lab/ProgressiveSentences


MobileHCI ’25 Adjunct, September 22–25, 2025, Sharm El-Sheikh, Egypt Janaka et al.

Table 1: Sample L1-L2 words and L1-L2 sentence list

L1 Word (English) L2 word (Wuggy) L1 Sentence (English) L2 Sentence (Wuggy) L2 Sentence (Norwegian)

he sa He reads a book Sa soan en beal Han leser en bok
she chu She eats an orange Chu voul en uaist Hun spiser en appelsin
reads soan The boy kicks a ball Snu bist yills en bune Gutten sparker en ball

4.4.4 Multimodal Representations. Audio (L1 and L2 pronuncia-
tions) was generated via OpenAI TTS API (tts-1, voice: nova, speed:
0.9) and manually verified. Mismatched L2 phrases were corrected
by concatenating word-level audio. Audio duration ranged from
0.1–3 seconds.

Google Image Search was used to retrieve outline-style mono-
chrome icons for each word, phrase, and sentence, minimizing
visual distraction [16, 38]. Three co-authors iteratively rated and
refined images for adherence to the selected ‘Seven C’ principles
(concise, concrete, coherent, comprehensible, correspondent) [1].

4.4.5 Presentation Layout and Style. As shown in Figure 1(b), L2
text, L1 text, and images appeared top-center, minimizing visual
obstruction. Transparent-outline images preserved central visibility
and enabled quick recognition [23, 44]. All visuals were rendered
in white for consistency [38].

Following prior work [18, 37] and informal testing, L2 text ap-
peared before its L1 meaning. Audio was synchronized with text;
images appeared with L2 text. Words were displayed for at least
6 seconds, phrases (consisting of 2 or more words) for 8 seconds,
and sentences for 12 seconds. Each item was shown twice to enable
review. We avoided spaced repetition [14] to equalize exposure
time. All modalities and gaps were time-matched across conditions
(i.e., equal total exposure time). Refer to individual study sections
for presentation timing details.

4.5 Study Design
All studies (pilot and formal) employed a within-subject, repeated-
measures design. Experimental conditions were counterbalanced us-
ing a Latin square. To control learning material complexity, 3–4 sen-
tences were grouped per condition with matched sentence lengths
and L2 word counts. Learning material groups were presented in a
fixed order, while experimental conditions were counterbalanced,
to minimize biases across groups.

4.6 Measures
Table 2 lists all common measures. We evaluated ‘remembering’
and ‘understanding’ based on Bloom’s Revised Taxonomy [25]. Pri-
mary metrics were free recall (L2–L1 word pairs, no cues) and cued
recall (L2 to L1; Recall) [16, 25]. Word-Recall and Seen-Sentence-
Recall assessed remembering for studied content, while Unseen-
Sentence-Recall tested understanding via novel L2 sentences com-
bining knownwords [40]. For example, if a participant saw ‘She eats
an orange’ and ‘The boy kicks a ball,’ an unseen sentence might
be ‘The boy eats a ball,’ which, although potentially unrealistic,
would be grammatically correct. A questionnaire collected all four
Recall types in this order: Free-Recall,Word-Recall, Seen-Sentence-
Recall, Unseen-Sentence-Recall. Scoring followed prior work [19, 41],

allowing partial credit for correct structure and meaning (see Ap-
pendix A.1).

Learning cognitive load ratings were collected via 7-point Likert
scales per condition, based on validated measures [11, 28].

We also collected preference rankings (Preference) and qualita-
tive feedback through semi-structured interviews on strategies,
challenges, and suggestions.

Analysis. Data were analyzed using repeated-measures or facto-
rial ANOVA. If assumptions were violated, we used Friedman tests
or ART-based ANOVA [42]. Normality and sphericity were checked
using Shapiro-Wilk and Mauchly’s tests; post-hoc tests used paired
t-tests, ART contrasts, or Wilcoxon tests with Bonferroni correction
(see Appendix A.2 for details).

Transcribed interview recordings and open-ended responses in
questionnaires were analyzed using thematic analysis as described
in Braun and Clarke’s methodology [6].

4.7 Procedure
After informed consent, participants were introduced to tasks, pre-
sentation styles, and sample questions. They could practice aloud
but not take notes or rehearse outside sessions. Participants com-
pleted all conditions in a set order. After each, they completed a
questionnaire. Partial answers for immediate recall were allowed,
but guessing was discouraged. A 2-minute break followed each
condition.

At the end, participants ranked their preferred styles and com-
pleted a 5–10 minute semi-structured interview. Sessions lasted
around 1 hour, including training. A delayed recall questionnaire
was sent online after 7 days to assess retention [34, 37]. Participants
were instructed to rely solely on memory.

5 Pilot 1: Identifying Suitable Modalities for
Sentences duringWalking

In this pilot, we compared five common modality combinations (i.e.,
NoImageNoAudio: L2 Text → L1 text; NoImageWithAudio: L2 text +
L2 audio→ L1 text; ImageWithAudio: L2 text + L2 audio + Image
→ L1 audio; ImageWithText: L2 text + L2 audio + Image → L1 text;
ImageWithTextAudio: L2 text + L2 audio + Image → L1 text + L1
audio ) [31] with 5 (3F, 2M) participants, to identify complementary
modalities for sentence-based learning duringWalking (Sec 4).

While there were no statistically significant differences, the text-
only condition (i.e., NoImageNoAudio) had the lowest recall scores,
whereas the text+image+audio combination (i.e., ImageWithTextAu-
dio) yielded the highest, aligning with theMultimedia Principle [31].
Specifically, all participants preferred the combination of L2 text +
L2 audio + image, followed by L1 text + L1 audio. Audio helped with
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Table 2: Measures used in each study

Measure Sub-measure Definition/Operationalization

Recall Free-Recall The total score for writing the correct L1-L2 words pairs without any cues
Word-Recall The total score for writing the correct L1 word for the seen (given) L2 word
Seen-Sentence-Recall The total score for writing the correct L1 sentence for the seen L2 sentence
Unseen-Sentence-Recall The total score for writing the correct L1 sentence for the unseen L2 sentence

Cognitive Load DifficultToUnderstand “I find the learning content during this session/style difficult to understand.”
(Learning [11, 28]) Confusing “The learning content presented by this learning session/style is confusing for me.”

EasyToRemember “This learning session/style allows me to easily remember most of the learning content.”
AbsorbedInLearning “I was absorbed in using this session/style to learn the new language.”
Enjoyable “It is enjoyable to learn a new language with this session/style.”

Preference Preference The overall preference ranking

pronunciation (L2) and meaning (L1) without drawing visual at-
tention from the mobile multitasking. However, participants noted
difficulty understanding full sentences due to limited support for
individual word meanings.

6 Pilot 2: Evaluating Progressive Disclosure
duringWalking

Progressive Presentation of Sentences. To address word-level
comprehension within sentences, we developed a progressive disclo-
sure presentation (Progressive, Figure 1(b)) based on the Segmenting
Principle [31]. Sentences were broken into subject, verb, and object
components, presented sequentially to support stepwise under-
standing. Previously shown words remained visible, and new ones
were highlighted using transparency cues following the Signal-
ing Principle [31]. Once all components were introduced, the full
sentence was displayed.

Pilot 2. We compared Progressive with full sentences (Full) and
individual words presented randomly (Word, no sentence structure),
with 6 (4F, 2M) participants during Walking. Although differences
were not statistically significant, Progressive yielded the highest re-
call. All participants preferred it, noting improved memory for both
individual words and sentence structure. It also reduced cognitive
load compared to Full and helped link L2 and L1 words.

However, three participants (3/6) suggested adding pauses be-
tween words in Progressive to aid memory consolidation.

7 Pilot 3: Determining Optimal Word Gaps for
Progressive duringWalking

This pilot tested gap durations (2s, 4s, 6s, 8s) with two (1F, 1M)
participants duringWalking. The findings suggested that the gap
should be neither too short—making it unnoticeable—nor too long,
which could cause participants to forget the connection between
words in a sentence. A 4-second gap was identified as a balanced
option and selected for further study. While the optimal duration
warrants further investigation, this finding is consistent with prior
research on notification resumption gaps, which support the acqui-
sition of secondary information during mobile multitasking [22].

8 Study 1: Understanding the Effect of Mobility
andWord-Gap on Progressive Presentation

Participants: Twelve volunteers (7F, 5M; age𝑀 = 22.3, 𝑆𝐷 = 3.3)
participated in the study. Ten were native English speakers; two
had professional fluency. All but one had used mobile language
apps; two had limited prior AR smart glasses exposure.

Design and Procedure: Following Sec 4.7, the study used a 2×2
design: Mobility (Sitting, Walking) × Word-Gap (NoGap = 0s, Gap =
4s). Participants learned 12 sentences (3 per condition) and 32 new
L2 words (8 per condition).

Results: Figure 2 shows the significant results (refer to Appen-
dix B: Figure 3, Table 3 for details). For Walking, all participants
successfully completed the Lego assembly.

Figure 2: Free-Recall (Immediate) interactions and Prefer-
ence rankings for the Study 1 (N=12). Here, S = Sitting, W =
Walking, 1 = NoGap, and 2 = Gap. For example, S1 represents,
Sitting with NoGap.

Recall: Repeated-measures ANOVA with ART [42] showed sig-
nificant main effects of Mobility (𝑝 < 0.05).

In immediate Recall, Sitting yielded significantly higher Free-
Recall, Word-Recall, and Seen-Sentence-Recall scores (𝑝 < 0.05).
Free-Recall also showed significant main and interaction effects of
Word-Gap (𝐹1,33 = 5.62, 𝑝 = 0.02; 𝐹1,33 = 5.96, 𝑝 = 0.02). Post-hoc
results (Figure 2) revealed Gap (𝑀 = 4.9, 𝑆𝐷 = 2.0) outperformed
NoGap (𝑀 = 4.3, 𝑆𝐷 = 1.7; 𝑝𝑏𝑜𝑛𝑓 < 0.05, 𝑑 = 0.44). InWalking, Gap
(𝑀 = 4.7, 𝑆𝐷 = 2.2) significantly exceeded NoGap (𝑀 = 3.1, 𝑆𝐷 =

1.8); no such effect was found in Sitting.
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In delayed (7-day) Recall, Sitting again led to significantly better
scores for Word-Recall (𝐹1,33 = 13.76, 𝑝 < 0.001) and Seen-Sentence-
Recall (𝐹1,33 = 5.75, 𝑝 = 0.02). No other significant effects were
found.

Learning Cognitive Load: All subjective scales showed signifi-
cant main effects of Mobility (𝑝 < 0.05) via ART-based ANOVA.
Sitting was rated lower in DifficultToUnderstand and Confusing, and
higher in EasyToRemember, AbsorbedInLearning, and Enjoyable. Par-
ticipants attributed this to divided attention during multitasking,
which diminished the capacity for remembering learning content.

Preference results (Figure 2): 11/12 preferred Sitting for better fo-
cus. One preferredWalking to “keep the mind active”. Word gaps did
not affect preferences during Sitting, though two noted increased
mind-wandering. During Walking, the majority (9/12) preferred
having word gaps as it “gave time to practice and solidify the words
in memory” and “one without any gaps is [felt] too fast.” Some of
them (6/9) also mentioned that the gaps between words “gave more
chances to review previous words and prepare for upcoming words
while attention was split.” The rest (3/12) did not notice the gaps.

Subjective Feedback: When asked to compare Progressive and
Full presentations, most participants (10/12) preferred Progressive,
citing its one-to-one word mapping, which helped them under-
stand individual meanings and how words connect. In contrast,
Full sentences would require more cognitive effort to link L2 and
L1 words, leaving less time for review. Similarly, all participants
favored Progressive over random individual words, highlighting the
importance of sentence context in supporting comprehension.

9 Pilot 4: Preliminary Ecological Validation of
the Progressive Presentation

To assess generalizability beyond artificial corpora, we used Nor-
wegian (Bokmål) as L2. This pilot followed the Study 1 procedure
(Sec 8) with differences in materials and a pre-test (see Appendix C).

Four volunteers (1F, 3M; age 𝑀 = 24.3, 𝑆𝐷 = 2.1), without
prior knowledge of Norwegian or related languages (e.g., German
or Norse), participated in the study. Three were native English
speakers; one had professional fluency. All had experience with
mobile language apps.

Results: Each participant learned 12 sentences (3 new sentences
per condition) and 28 new vocabulary words (7 new vocabulary
words per condition) across four conditions. See details in Appen-
dix C.3 (Table 4, Figure 4).

Sitting resulted in significantly higher immediate Free-Recall
than Walking (𝐹1,3 = 32.0, 𝑝 = 0.01, 𝜂2𝑝 = 0.91); other differences
were not significant. The trends observed were consistent with
those in Study 1. Regarding preference and interview feedback, all
participants preferred the Sitting over Walking (with no impact of
Word-Gaps), and Gap over NoGap during Walking. Similar to Study
1, participants reported that word gaps duringWalking helped them
consolidatememory before the next word appeared, whereas during
Sitting, the gaps had minimal perceived impact. As one noted, “I felt
that in the second walking [without gaps], the words went too fast,
but all were ok for sitting.” These findings support the applicability
of Progressive for real languages with similar grammar.

10 Discussion
Why is progressive presentation effective for multitasked learn-

ing? Our findings suggest that Progressive presentation in AR smart
glasses—sequentially revealing information while retaining prior
content and highlighting new elements—supports language learn-
ing by facilitating word familiarity and preserving sentence context.
This method aids learners in understanding how words connect
meaningfully. These results align with Layered Serial Visual Presen-
tation (LSVP) [34], which found that persistent, sequential delivery
enhances recall in mobile video-learning contexts by improving
attention control, consistent with Perceptual Load Theory (PLT)
[26].

We also found that inserting word gaps (i.e., no-content intervals)
improves short-term retention during multitasking. Although no
significant effects were observed for long-term retention—likely
due to small sample size—our findings align with prior work em-
phasizing system pacing that matches users’ cognitive load and
processing capacity [17]. While word gaps had minimal benefit in
stationary settings, they were helpful under multitasking, giving
learners time to consolidate new information. Although we used
a 4-second default, participant feedback suggests that the optimal
gap duration may vary based on task demands, highlighting the
value of adaptive timing to balance focus between primary and
secondary tasks—similar to notification resumption gaps during
multitasking [22].

When and how should progressive presentation be used? User feed-
back indicates that Progressive is most effective as a scaffolding
technique for novice learners encountering unfamiliar vocabulary.
It enables gradual exposure while maintaining sentence context,
supporting both word- and sentence-level comprehension. Once
learners develop familiarity, full-sentence presentationmay bemore
efficient, allowing them to infer meanings without stepwise sup-
port.

In this study, sentence segmentation and image selection were
done manually to ensure coherence. To scale this approach, large
language models (LLMs) could automatically segment sentences,
while text-to-image models [4] could generate relevant visuals.
Post-processing methods could evaluate image-sentence alignment
and assemble semantically coherent sequences [9, 10].

10.1 Limitations and Future Work
While this study offers preliminary evidence, several limitations
affect its generalizability. First, the L2 used had grammatical struc-
tures similar to L1, limiting insights into structurally different lan-
guages. Second, the participant pool was skewed toward tech-savvy
individuals. Third, the small sample size and controlled lab settings
limit ecological validity. Due to the sample size, no statistically
significant effects were observed for long-term recall. Additionally,
due to our scoping, the study did not explore context-dependent AR
presentations (e.g., 3D-anchored content), and mobile multitasking
was not studied independently from walking.

Future work should validate these findings through longitudinal
studies involving more diverse populations, broader language sets,
and various AR smart glasses in real-world environments. This in-
cludes testing under different conditions (e.g., lighting, distractions)
to better assess robustness and generalizability. A power analysis
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using the current results as priors could help determine the mini-
mum required sample size for future studies. Additionally, further
research is needed to examine whether Progressive presentation can
be effectively extended to other device platforms in multitasking
contexts.
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A Common Setting
A.1 Scoring
Following previous work [19, 37, 41] and our objectives, for each
correct recall of an individual L2 word, 1 point was awarded. Vari-
ations in the plurality of nouns or verbs, verb tenses, and minor
typos in the provided L1 words did not result in a loss of marks
(e.g., if the correct L1 word is ‘reads’ and the given L1 word is
‘read’, it was considered correct). A similar scheme was applied to
sentence scoring, where each correct identification of an L1 sen-
tence resulted in either 2 or 3 points, depending on the number
of unique L2 words in the sentence. Partial marks were awarded
if the participant recognized the meaning of L2 words and placed
them in the correct location within the sentence. The scoring did
not consider pronouns, articles, prepositions, and common verbs
(i.e., is/are) that appeared in more than one sentence. For example,
if the correct L1 sentence is ‘He reads a book’, but the participant
provided ‘He x book’, 1 point was awarded. If the participant pro-
vided ‘The book’, 0 points were given. If the participant provided,
‘He read the book’, the full score of 2 points was awarded. For each
condition, the total score was calculated by summing the individual
scores of words/sentences.

A.2 Analysis
A one-way repeated measures ANOVA (for a single factor with
multiple levels) or a factorial ANOVA (for two factors with multiple
levels) was used to analyze the quantitative data. When the as-
sumptions of ANOVA were violated, the Friedman test or factorial
repeated measures ANOVA after Aligned Rank Transform (ART
[42]) was employed. The normality of the data was tested using
the Shapiro-Wilk test, and sphericity was tested using Mauchly’s
test. Paired-sample t-tests, ART contrasts2, or Wilcoxon signed-
rank tests were used as post-hoc tests, with Bonferroni correction
applied for multiple comparisons.

B Study 1
Table 3 and Figure 3 indicate the performance of the participants
(N=12).

C Pilot 4
C.1 Materials
We selected Norwegian (L2) because its grammar system is straight-
forward for English speakers to learn, but its vocabulary, derived
from Old Norse and influenced by German, is largely distinct from
English3 (see Table 1 for examples). This choice was made to avoid
confounding factors such as cognates. In cases where close cog-
nates existed, those sentences were excluded from the study (e.g.,
L1: “book” vs L2: “bok”, L1: “ball” vs L2: “ball”).

Audio pronunciation for the L2 texts was generated using the
Google Cloud TextToSpeech API (language: ‘nb-NO’, voice: NEU-
TRAL, speaking rate: 0.9, format: .mp3) and was manually verified
for accuracy.

C.2 Design and Procedure
The study design was the same as the Study 1 (Sec 8). The procedure
was similar to the common setting (Sec 4.7), with the addition of
a pre-test to assess participants’ familiarity with the selected L2
words. All participants scored 0 on the pre-test, allowing the post-
test scores to be used directly to measure recall accuracy.

C.3 Results
Table 4 and Figure 4 indicate the performance of the participants
(N=4).

2Using art.con(), https://cran.r-project.org/web/packages/ARTool/vignettes/art-
contrasts.html
3https://thelanguages.com/norwegian/grammar-rules-compared-to-english/
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Table 3: Performance and User Ratings with 12 participants in Study 1. Here, S = Sitting, W = Walking, 1 = NoGap, and 2 = Gap.
For example, S1 represents Sitting with NoGap. The orange color highlight corresponds to the best (mean) performance for

Sitting while the green color is for Walking.

Condition S1 S2 W1 W2

Measure M SD M SD M SD M SD

Immediate Recall Measures
Free-Recall 5.417 1.621 5.417 1.782 3.083 1.881 4.750 2.261

Word-Recall 7.083 1.443 7.083 1.505 5.667 1.435 5.833 2.368

Seen-Sentence-Recall 7.917 0.289 7.750 0.622 7.083 1.165 7.417 0.996

Unseen-Sentence-Recall 4.167 1.642 4.083 1.443 3.417 2.234 3.583 2.234

Delayed Recall Measures
Free-Recall 0.417 0.515 0.333 0.492 0.583 1.165 0.583 0.669

Word-Recall 1.917 1.730 1.167 1.193 0.667 0.985 0.583 0.996

Seen-Sentence-Recall 3.333 2.387 2.333 2.425 2.500 2.812 1.583 2.429

Unseen-Sentence-Recall 1.500 1.977 0.750 1.138 0.917 1.621 0.833 1.528

User Ratings
DifficultToUnderstand 3.167 1.337 3.083 1.165 4.083 1.730 4.250 1.055

Confusing 2.917 1.379 2.667 1.155 4.083 1.832 4.167 1.267

EasyToRemember 3.833 1.193 4.500 1.508 2.667 1.155 2.833 0.835

AbsorbedInLearning 4.750 1.712 5.167 1.586 3.917 1.564 4.333 1.435

Enjoyable 4.583 2.109 4.750 1.913 3.750 1.765 4.083 1.443
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(a) Immediate Recall scores. The maximum score for each measure is 8, except for Unseen-Sentence-Recall, which has a maximum of 6.

(b) Delayed (7-day) Recall scores. The maximum score for each measure is 8, except for Unseen-Sentence-Recall, which has a maximum of 6.

(c) Subjective ratings on a 7-point Likert scale, where 1 = Strongly Disagree and 7 = Strongly Agree.

Figure 3: Measures on recall and perception with 12 participants in Study 1. Here, S = Sitting, W = Walking, 1 = NoGap, and 2 =
Gap. For example, S1 represents, Sitting with NoGap. Dashed lines inside the box plots indicate the mean values.
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Table 4: Performance and User Ratings with 4 participants in Pilot 4. Here, S = Sitting, W =Walking, 1 = NoGap, and 2 = Gap.
For example, S1 represents, Sitting with NoGap. The orange color highlight corresponds to the best (mean) performance for

Sitting while the green color is for Walking.

Condition S1 S2 W1 W2

Measure M SD M SD M SD M SD

Immediate Recall Measures
Free-Recall 5.750 0.957 5.750 1.500 3.750 1.708 3.750 1.500

Word-Recall 7.000 0.000 6.250 0.957 4.750 2.062 5.250 1.258

Seen-Sentence-Recall 7.000 0.000 6.750 0.500 5.750 1.893 6.250 0.957

Unseen-Sentence-Recall 4.250 1.258 4.500 1.000 2.750 2.217 3.750 1.708

Delayed Recall Measures
Free-Recall 0.750 0.957 0.750 0.957 0.500 1.000 0.250 0.500

Word-Recall 2.750 0.957 2.750 1.500 2.000 1.633 2.750 1.500

Seen-Sentence-Recall 4.750 1.708 4.250 0.957 3.000 2.309 4.750 2.062

Unseen-Sentence-Recall 2.750 1.258 3.000 1.414 2.500 1.732 3.000 1.414

User Ratings
DifficultToUnderstand 2.750 0.957 2.250 1.258 3.750 1.500 4.500 1.291

Confusing 2.250 0.500 1.750 0.957 3.000 2.309 3.500 2.380

EasyToRemember 5.500 1.291 5.250 1.500 4.000 0.816 3.000 0.816

AbsorbedInLearning 6.250 0.500 6.000 0.816 4.500 2.082 4.500 1.732

Enjoyable 6.250 0.500 6.000 0.816 5.000 1.633 5.250 1.258
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(a) Immediate Recall scores. The maximum score for each measure is 7, except for Unseen-Sentence-Recall, which has a maximum of 6.

(b) Delayed (7-day) Recall scores. The maximum score for each measure is 8, except for Unseen-Sentence-Recall, which has a maximum of 6.

(c) Subjective ratings on a 7-point Likert scale, where 1 = Strongly Disagree and 7 = Strongly Agree.

(d) Preference ranking.

Figure 4: Measures on recall and perception with 4 participants in Pilot 4. Here, S = Sitting, W =Walking, 1 = NoGap, and 2 =
Gap. For example, S1 represents, Sitting with NoGap. Dashed lines inside the box plots indicate the mean values.
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